Bu bölümde Ata Yayıncılık 4. Sınıf Matematik kitabının 281 ve 285. sayfaları arasındaki ünite değerlendirmesi sorularının cevapları yer almakadır.
1. Kare ve dikdörtgenlerin çevre uzunluklarını altlarındaki noktalı yerlere yazınız.
2. Çevre uzunlukları verilen kare ve dikdörtgenlerin verilmeyen kenar uzunluklarını bulunuz.
ÇÖZÜMLER:
3. Bir dikdörtgen ile kenar uzunluğu 7 cm olan bir karenin çevre uzunlukları eşittir. Dikdörtgenin uzun kenarı 10 cm uzunluğunda olduğuna göre kısa kenarı kaç cm uzunluğundadır?
ÇÖZÜM:
Önce karenin çevre uzunluğu bulunur.
7 x 4 = 28 cm
Dikdörtgenin çevre uzunluğu da 28 cm’dir.
Uzun kenarı 10 cm olduğuna göre 2 uzun kenarın uzunlukları:
10 + 10 = 20 cm’dir.
Bu durumda 2 kısa kenar:
28 – 20 = 8 cm’dir.
2 kısa kenar 8 cm ise 1 kısa kenar:
8 ÷ 2 = 4 cm’dir.
4. ABCD karesinin kenar uzunluğu 2 cm artırılırsa çevre uzunluğu kaç cm artar?
ÇÖZÜM:
Karenin 4 eşit kenarı olduğundan bir kenar uzunluğu 2 cm artırılırsa çevre uzunluğu:
4 x 2 = 8 cm artar.
Örneğin: Bu karenin bir kenarı 6 cm olsaydı çevre uzunluğu:
6 x 4 = 24 cm olur.
2 cm artırılırsa karenin bir kenarı 8 cm olur.
Bu durumda çevre uzunluğu:
8 x 4 = 32 cm olur.
Yani 32 – 24 = 8 cm artmıştır.
5. Kareli kâğıttaki kare ve dikdörtgenin çevre uzunluklarını bulunuz.
6. İzometrik kâğıda, çevre uzunluğu 20 birim olan dört farklı şekil çiziniz.
ÇÖZÜM: İzometrik kağıdın çevre uzunluğu belli olan bir şekil çizmek için uygun olmadığını düşündük ve bu nedenle noktalı kağıt kullandık.
Siz daha farklı dikdörtgenler ve çokgenler çizebilirsiniz.
7. Servet Bey, dikdörtgen biçimindeki bir parkın etrafında her sabah 8 tur yürüyüş yapmaktadır. Parkın uzun kenarı 40 m, kısa kenarı 14 m uzunluğunda olduğuna göre Servet Bey, her sabah kaç m yürüyüş yapmaktadır?
ÇÖZÜM:
Önce dikdörtgen biçimindeki parkın çevre uzunluğu bulunur. Sonra da 8 tur attığı için 8 ile çarpılır.
Parkın çevre uzunluğu:
40 + 14 = 54
54 x 2 = 108 m’dir.
8 tur attığına göre:
108 x 8 = 864 m yürüyüş yapmaktadır.
8. Görselde verilenleri kullanarak çevre uzunluğu ile ilgili bir problem kurunuz. Kurduğunuz problemi çözünüz.
ÇÖZÜM:
Örnek Problem: Görseldeki bahçenin etrafında 3 tur dolaşan Giray kaç m yürümüş olur?
Çözüm: Önce bahçenin çevre uzunluğu bulunur. Sonra 3 ile çarpılır.
Bahçenin çevre uzunluğu:
5 x 10 = 50 m
3 tur attığı için:
50 x 3 = 150 m yürümüş olur.
9. Noktalı kâğıtta verilen mavi şeklin alanını, kapladığı birimkarelerin sayısını belirleyerek bulunuz.
ÇÖZÜM: Şekildeki tam kareler sayılır, yarım karelerin de 2 tanesi 1 sayılır ve toplam alan bulunur.
Görüldüğü gibi şekilde 28 tam kare ve 4 yarım kare vardır. 4 yarım kare 2 kare olduğundan mavi şeklin alanı:
28 + 2 = 30 birimkare olarak bulunur.
10. Kare ve dikdörtgenlerin alanlarını; birimkareleri sayarak, tekrarlı toplama işlemi ve çarpma işlemi yaparak ayrı ayrı bulunuz.
ÇÖZÜM:
11. Verilen kütlelere göre noktalı yerlere uygun sayıları yazınız.
CEVAPLAR:
12. Bir horozun kütlesi 3 kg 400 gramdır. Buna göre horozun kütlesi kaç gramdır?
ÇÖZÜM: kilogram miktarı grama çevrilir, verilen gram miktarıyla toplanır.
3 kg = 3000 g
3000 + 400 = 3400 gramdır.
13. Kütlesi ton ile belirtilen varlığın altındaki kutucuğu maviye, miligram ile belirtilen varlığın altındaki kutucuğu yeşile boyayınız.
CEVAP:
14. Şemadaki dönüştürmeler doğru ise “D”, yanlış ise “Y” yolunu seçiniz. Kaçıncı çıkışa ulaştınız?
CEVAP:
15. 6 ton odun, 100 kg’lık çuvallara konuluyor. Buna göre kaç çuval odun elde edilir?
ÇÖZÜM: Önce 6 tonun kaç kilogram olduğu bulunur. Daha sonra da 6 tonun içinde kaç 100 kg olduğu bulunur.
6 t = 6000 kg
6000 ÷ 100 = 60 çuval odun elde edilir.
16. 9 kg 300 g peynirin 820 gramı satılmıştır. Buna göre satılmayan kaç gram peynir kalmıştır?
ÇÖZÜM: Önce peynir miktarı gram cinsinden belirlenir. Sonra satılan miktar çıkarılır.
9 kg = 9000 g
9000 + 300 = 9300 g peynir var.
820 g satıldığına göre geriye:
9300 – 820 = 8480 gram peynir kalmıştır.
17. Verilenlere göre bir problem kurunuz. Kurduğunuz problemi çözünüz.
Örnek Problem: Bir çiftçi 20 ağaçtan 7 ton zeytin elde etmektedir. 1 kg zeytinden 4 TL’lik zeytinyağı çıktığına göre 1 ağaçtan kaç liralık zeytinyağı elde edilir?
ÇÖZÜM: 20 ağaçtan 7 t yani 7000 kg zeytin toplandığına göre:
7000 ÷ 20 = 350 kg zeytin toplanır.
1 kg zeytinden 4 TL’lik zeytinyağı elde edildiğine göre:
350 x 4 = 1400 liralık zeytinyağı elde edilir.
Not: Litre hesabına gitmek istemedim çünkü zeytinyağının litresi 40 lira.
18. Yandaki kutucuklarda, bazı sıvı ölçüleri verilmiştir. Buna göre aşağıdaki soruları cevaplayınız.
CEVAPLAR: Cevaplar her sorunun yanında verilmiştir.
a) Hangi kutucuklardaki sıvı ölçüleri eşittir?
Cevap: 3 L 240 mL = 3000 ml + 240 = 3240 mL olduğundan B ve C kutularındaki miktarlar eşittir.
b) 3 L’lik sıvı ölçüsü hangi kutucukta verilmiştir?
Cevap: 3000 mL = 3 L olduğundan cevap D’dir.
c) “Bir bardakta 250 mL su varsa bu bardağa eş olan 10 bardakta bulunan suyun miktarı kaç L kaç mL dir?” probleminin sonucu hangi kutucukta verilmiştir?
Cevap: 250 x 10 = 2500 mL = 2 L 500 mL yani cevap A’dır.
ç) Hangi kutucuktaki sıvı ölçüsüne 1 L 500 mL eklenirse toplam sıvı ölçüsü 4 L olur?
Cevap: 1 L 500 mL eklendiğinde 4 L olması için:
4000 – 1500 = 2500 mL olmalıdır. Buna eşit olan da 2 L 500 mL yani A’dır.
19. Sıvılardan hangisi ölçülürken mL birimi kullanılır? İşaretleyiniz.
CEVAP:
20. Eş kaplardaki mavi sıvının ölçüsü 200 mL’dir. Buna göre yeşil sıvının ölçüsünü tahmin ediniz. Tahmin ederken kullandığınız yöntemi açıklayınız.
CEVAP: Yeşil sıvı mavi sıvının 2 katı kadar görünmektedir. Kaplar eş olduğuna göre mavi sıvının miktarını 2 ile çarparız.
200 x 2 = 400 mL
Bir yanıt bırakın